## PROBLEM SET 2

YIHANG ZHU

Exercise 1. Let $K=\mathbb{Q}(\sqrt{n})$ with $n$ square free. If $n \equiv 1 \bmod 4$, then $\mathcal{O}_{K}=$ $\mathbb{Z}\left[\frac{1+\sqrt{n}}{2}\right]$ and $d_{K}=n$. If $n \equiv 2,3 \bmod 4$, then $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{n}]$ and $d_{K}=4 n$. Concisely written we have $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{d_{K}+\sqrt{d_{K}}}{2}\right]$ in any case.

Exercise 2. The general class number formula yields the following way to compute $h_{K}$ for an imaginary quadratic field $K=\mathbb{Q}(\sqrt{n}), n<0$ square free. Let $w_{K}$ be the number of roots of unity in $K$. ( 4 for $\mathbb{Q}(i), 6$ for $\mathbb{Q}(\sqrt{-3}), 2$ otherwise.) Let $N=\left|d_{K}\right|$. Then

$$
h_{K}=-\frac{w_{K}}{2 N} \sum_{a=1}^{N} a \chi(a)
$$

where $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$ is a homomorphism characterized by the condition $\chi(p)=\left(\frac{n}{p}\right)$ for odd primes $p$ coprime to $n$. Note that although the existence of such a $\chi$ is nontrivial, we can compute the values of $\chi$ using the characterization. Compute the class numbers of $\mathbb{Q}(\sqrt{-5}), \mathbb{Q}(\sqrt{-6}), \mathbb{Q}(\sqrt{-10})$.

Exercise 3. Let $K$ be a quadratic extension of $\mathbb{Q}$ with discriminant $d$. Prove the following: Let $p$ be an odd prime. We have
(1) $p$ is ramified in $K$ if and only if $p \mid d$. We have $(p)=(p, \sqrt{d / 4})^{2}$ when $4 \mid d$, and $(p)=(p, \theta)^{2}$ when $4 \not \backslash d$.
(2) Let $p$ be prime to $d$ and suppose $\left(\frac{d}{p}\right)=1$. Then $p$ is split. If $4 \mid d$, we have $(p)=(p, \sqrt{d / 4}-a)(p, \sqrt{d / 4}+a)$ where $a \in \mathbb{Z}$ is any solution to $a^{2} \equiv d / 4$ $\bmod p$. If $4 \not \backslash d$, we have $(p)=(p, \theta-(d+a) b)(p, \theta-(d-a) b)$, where $a, b \in \mathbb{Z}$ are any solutions to $a^{2} \equiv d, 2 b \equiv 1 \bmod p$.
(3) If $p$ is prime to $d$ and $\left(\frac{d}{p}\right)=-1$, then $p$ is inert in $K$.

Moreover, 2 is ramified in $K$ if and only if $4 \mid d$, in which case $(2)=(2, \sqrt{d / 4}-d / 4)^{2}$. Suppose $4 \not \backslash d$. When $\frac{d-1}{4}$ is odd, 2 is inert. When $\frac{d-1}{4}$ is even, $(2)=(2, \theta)(2, \theta+1)$ is split.

